Publications
2016 P1. Ghosh, S., Awasthi, M., Ghosh, M., Seibt, M., and Niehaus, T.A.Graphene quantum dots with visible light absorption of the carbon core: insights from single-particle spectroscopy and first principles based theory
2D Materials 3, 041008 (2016)
DOI: 10.1088/2053-1583/3/4/041008
2016 P2. Plötz, P.A., Polyutov, S.P., Ivanov, S.D., Fennel, F., Wolter, S., Niehaus, T., Xie, Z., Lochbrunner, S., Würthnerd, F. and Kühn, O.
Biphasic aggregation of a perylene bisimide dye identified by exciton-vibrational spectra
Phys. Chem. Chem. Phys 18, 25110 (2016)
DOI: https://doi.org/10.1039/C6CP04898F
2017 P3. Stojanović, L., Aziz, S.G., Hilal, R.H., Felix Plasser, F., Niehaus, T.A., and Barbatti, M.
Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping
J. Chem. Theory Comput. 13, 5846 (2017)
DOI: https://doi.org/10.1021/acs.jctc.7b01000
2017 P4. Kranz, J.J., Elstner, M., Aradi, B., Frauenheim, T., Lutsker, V., Dominguez. A., and Niehaus, T.A.
Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method
J. Chem. Theory Comput. 13, 1737 (2017)
DOI: https://doi.org/10.1021/acs.jctc.6b01243
2018 P5. Feng, S., Li, Q.-S., Niehaus, T.A., Li, Z.-S.
Effects of different electron donating groups on dye regeneration and aggregation in phenothiazine-based dye-sensitized solar cells
Org. Elec. 42, 234 (2017)
DOI: https://doi.org/10.1016/j.orgel.2016.12.043
2018 P6. Niehaus, T., Meziane, M., Lepine, F., Marciniak, A., Yamazaki, K. and Kono, H.
Pulse shape and molecular orientation determine the attosecond charge migration in Caffeine
Eur. Phys. J. B 91, 152 (2018)
DOI: https://doi.org/10.1140/epjb/e2018-90223-5
2018 P7. Heydariyan, S., Nouri, M. R., Alaei, M., Allahyari, Z. and Niehaus, T.
New candidates for the global minimum of medium-sized silicon clusters: A hybrid DFTB/DFT genetic algorithm applied to Sin, n = 8-80
J. Chem. Phys. 149, 074313 (2018)
DOI: https://doi.org/10.1063/1.5037159
2019 P8. Niehaus, T.A., Melissen, S.T.A.G., Aradi, B., and Mehdi Vaez Allaei, S.
Towards a simplified description of thermoelectric materials: accuracy of approximate density functional theory for phonon dispersions
J. Phys.: Cond. Mat. 31, 395901 (2019)
DOI: 10.1088/1361-648X/ab2e34
2020 P9. Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M.Y., Dumitrica, T., Dominguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J.J., Köhler, C., Kowalczyk, T., Kubar, T., Lee, I.S., Lutsker, V., Maurer, R.J., Min, S.K., Mitchell, I., Negre, C., Niehaus, T.A., Niklasson, A.M.N., Page, A.J., Pecchia, A., Penazzi, G., Persson, M.P., Rezac, J., Sanchez, C.G., ternberg, M., Stöhr, M., Stuckenberg, F., Tkatchenko, A., Yu, V.W.Z., and T. Frauenheim
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
J. Chem. Phys. 152, 124101 (2020)
DOI: https://doi.org/10.1063/1.5143190
2020 P10. Dekkiche, H., Gemma, A., Tabatabaei, F., Batsanov, A.S., Niehaus, T., Gotsmann, B., and Bryce, M.R.
Electronic conductance and thermopower ofsingle-molecule junctions of oligo(phenyleneethynylene) derivatives
Nanoscale 12, 18908 (2020)
DOI: https://doi.org/10.1039/D0NR04413J
2021 P11. M. Varella, L. Stojanović, V. Q. Vuong, S. Irle, T. Niehaus, M. Barbatti.
How the Size and Density of Charge-Transfer Excitons Depend on Heterojunction’s Architecture.
Journal of Physical Chemistry C 125,5458(2021)
doi :10.1021/acs.jpcc.0c10762
2021 P12. Thomas Niehaus. Ground-to-excited derivative couplings for the density functional-based tight-binding method: semi-local and long-range corrected formulations.
Theoretical Chemistry Accounts: Theory, Computation, and Modeling, Springer
Verlag, 140 (4), pp.34.(2021)
doi :10.1007/s00214-021-02735-y
2021 P13. Monja Sokolov, Beatrix M. Bold, Julian J. Kranz, Sebastian Höfener, Thomas A. Niehaus, and Marcus Elstner.
Analytical Time-Dependent Long-Range Corrected Density Functional Tight Binding (TD-LC-DFTB) Gradients in DFTB+: Implementation and Benchmark for Excited-State Geometries and Transition Energies.
Journal of Chemical Theory and Computation 17 (4), 2266-2282 (2021)
doi :10.1021/acs.jctc.1c00095