Publications
1. Ghosh, S., Awasthi, M., Ghosh, M., Seibt, M., and Niehaus, T.A.Graphene quantum dots with visible light absorption of the carbon core: insights from single-particle spectroscopy and first principles based theory
2D Materials 3, 041008 (2016)
DOI: 10.1088/2053-1583/3/4/041008
2. Plötz, P.A., Polyutov, S.P., Ivanov, S.D., Fennel, F., Wolter, S., Niehaus, T., Xie, Z., Lochbrunner, S., Würthnerd, F. and Kühn, O.
Biphasic aggregation of a perylene bisimide dye identified by exciton-vibrational spectra
Phys. Chem. Chem. Phys 18, 25110 (2016)
DOI: https://doi.org/10.1039/C6CP04898F
3. Stojanović, L., Aziz, S.G., Hilal, R.H., Felix Plasser, F., Niehaus, T.A., and Barbatti, M.
Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping
J. Chem. Theory Comput. 13, 5846 (2017)
DOI: https://doi.org/10.1021/acs.jctc.7b01000
4. Kranz, J.J., Elstner, M., Aradi, B., Frauenheim, T., Lutsker, V., Dominguez. A., and Niehaus, T.A.
Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method
J. Chem. Theory Comput. 13, 1737 (2017)
DOI: https://doi.org/10.1021/acs.jctc.6b01243
5. Feng, S., Li, Q.-S., Niehaus, T.A., Li, Z.-S.
Effects of different electron donating groups on dye regeneration and aggregation in phenothiazine-based dye-sensitized solar cells
Org. Elec. 42, 234 (2017)
DOI: https://doi.org/10.1016/j.orgel.2016.12.043
6. Niehaus, T., Meziane, M., Lepine, F., Marciniak, A., Yamazaki, K. and Kono, H.
Pulse shape and molecular orientation determine the attosecond charge migration in Caffeine
Eur. Phys. J. B 91, 152 (2018)
DOI: https://doi.org/10.1140/epjb/e2018-90223-5
7. Heydariyan, S., Nouri, M. R., Alaei, M., Allahyari, Z. and Niehaus, T.
New candidates for the global minimum of medium-sized silicon clusters: A hybrid DFTB/DFT genetic algorithm applied to Sin, n = 8-80
J. Chem. Phys. 149, 074313 (2018)
DOI: https://doi.org/10.1063/1.5037159
8. Niehaus, T.A., Melissen, S.T.A.G., Aradi, B., and Mehdi Vaez Allaei, S.
Towards a simplified description of thermoelectric materials: accuracy of approximate density functional theory for phonon dispersions
J. Phys.: Cond. Mat. 31, 395901 (2019)
DOI: 10.1088/1361-648X/ab2e34
9. Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M.Y., Dumitrica, T., Dominguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J.J., Köhler, C., Kowalczyk, T., Kubar, T., Lee, I.S., Lutsker, V., Maurer, R.J., Min, S.K., Mitchell, I., Negre, C., Niehaus, T.A., Niklasson, A.M.N., Page, A.J., Pecchia, A., Penazzi, G., Persson, M.P., Rezac, J., Sanchez, C.G., ternberg, M., Stöhr, M., Stuckenberg, F., Tkatchenko, A., Yu, V.W.Z., and T. Frauenheim
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
J. Chem. Phys. 152, 124101 (2020)
DOI: https://doi.org/10.1063/1.5143190
10. Dekkiche, H., Gemma, A., Tabatabaei, F., Batsanov, A.S., Niehaus, T., Gotsmann, B., and Bryce, M.R.
Electronic conductance and thermopower ofsingle-molecule junctions of oligo(phenyleneethynylene) derivatives
Nanoscale 12, 18908 (2020)
DOI: https://doi.org/10.1039/D0NR04413J